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CHAPTER I

INTRODUCTION

Spallation is a failure condition caused by stress

wave interaction from blast or impact loading of an object.

The most common example is the conical hole produced in

glass by the impact of a pellet. In more ductile materials,

such as aluminum, a spall may be as subtle as the formation

of an internal void or as dramatic as in glass, with the

casting off of a chunk from the side of the plate opposite

to the side impacted.

Previous work on stress waves and spallation has

been done analytically, experimentally, and numerically.

There is a great deal of work on infinite half-spaces, but

only a few studies on plates, which are applicable and

necessary in order to understand spallation of plates.

Davids [1]1 has solved the problem of waves generated by a

point load applied to a plate both before and after reflect-

ing from the back face. A recent paper by Viswanathan and

Biswas [2] studies waves in a plate produced by distributed

loads. Their work is also analytical. Dally and Riley [31

have used dynamic photoelasticity to study stress waves in

1Numbers in brackets, [], refer to the Bibliography.
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a plate, but their work is not general. Ang and Newmark [4]

studied stress waves by a finite difference technique but

did not discuss reflections or spallation. Costantino [5]

outlined the finite element method for studying stress

waves but did not investigate the waves in detail or inves-

tigate reflections and spallation.

Figure 1 shows an experimentally produced spall in

an aluminum plate. Obviously, large plastic and hydrodynam-

ic -forces were present in the total response of the plate to

the impact. While a numerical scheme could be developed to

approximate the total phenomenon, it is not necessary. The

material must pass through the elastic range on the way to

a spall condition. Investigation of the elastic waves

alone will show which ones interact and where they interact

to develop high stresses. These interactions and stresses

may be interpreted for their contribution to spallation.

The research presented here uses dynamic finite

elements to investigate elastic stress waves in a plate.

The investigation will discuss all waves produced by point

and distributed loads applied to a plate. Conclusions will

be drawn as to their importance in spallation.

0 - - - . .
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CHAPTER II

FINITE ELEMENT METHOD

A short description of the finite element method in,

general is given first to outline the salient points of the

method. Then a more detailed description of the specific

method for axisymmetric problems is given. The discussion

of the axisymmetric dynamic finite element method also out-

lines the program used for this research. Detailed deriva-

tions of the items mentioned are in Appendix A. The program

is listed in Appendix C.

General Method

The general finite element approach to the analysis

of any continuous body may be listed in seven steps. These

are as follows:

1. Divide the body into suitable pieces or

elements;

2. Assume a displacement function for displacements

in an element. Compatability is insured because

the functions include parameters defined in

terms of nodal displacements;

LL
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3. Nodes are the intersections of the imaginary

lines and planes used to divide the continuum

into elements. The geometric locations of the

nodes must be recorded and also which nodes

correspond to each element;

4. Using force equilibrium at the nodes and virtual

work, the elements are combined to a system of

equations approximating the body. The equations

involve stiffness, displacement, and applied

forces;

5. If the problem,is dynamic, the inertia must be

accounted for in the equations developed in the

previous step. For transient wave problems,

the mass is lumped at the nodes. Standing wave

problems should be solved with the "consistent"

mass matrix which is derived by virtual work

with the inertia forces treated as distributed

body forces. The mass matrix times accelera-

tions of the nodes is addedto the static

equations of step' (4);

6. The system of equations is solved for nodal dis-

placements;

7. Once the nodal displacements are known, they are

used to find strains element by element which are

in turn used to find stresses throughout the body.

In a static problem, the equations formulated in

step (4) consist of stiffness terms times nodal displacements
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set equal to forces externally applied to the nodes.. The

nodal displacements are determined by an elimination tech-

nique or by inversion of the stiffness matrix. In a dynamic

problem, the mass times acceleration terms create second

order, linear differential equations. These may be solved

by integration, which may be prohibitively difficult, or by

rewriting the acceleration in finite difference notation.

The resulting algebraic equations are solved stepwise in

time. The displacements, strains and stresses change with

each time step.

The lumped mass approach is based on a paper by

Costantino [5]. The following axisymmetric application is

based mainly on a discussion by Zienkiewicz [6].

Dynamic Finite Element Method for Transient

Waves in an Axisymmetric Plate

Element Formulation

A circular, symmetric, distributed load applied to

-an infinite plate produces an axisymmetric response in the

plate. The infinite plate is approximated by an axisym-

metric disk of finite radius where the radius is great

enough so that reflections from the radial boundary do not

interfere with reflections from the back face of the plate

until after the time of interest. This axisymmetric model

is easily divided into axisymmetric finite elements as shown

in Figure 2. The elements are triangular in the R-Z plane

for simplicity of formulation and are the same as plane
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strain elements with the exception that thickness of an

element is replaced by centroidal circumference. Also,

they must be capable of circumferential strain and stress.

Nodal points of plane theory become nodal rings in

axisymmetric application. Circumferential effects are a

function of radial effects only, so that only radial and

axial displacements are required to fully describe the prob-

lem. Suitable displacement functions involve one constant

for each degree of freedom of the element. This is a

Rayliegh-Ritz approximation.

UR = al + a2 R + a3Z

UZ = a4 + a5R + a6 Z
(1)

where a1 through a6 are the unknown constants.

R and Z are the coordinate position of the point

whose displacement is desired.

UR = radial displacement of the point.

UZ = axial displacement of the point.

The constants, ai, (i = 1, 2, . . , 6), may be

defined in terms of nodal displacements as is shown in

Appendix A. The displacement of any point in an element

is then defined by the nodal displacements and the geome-

tric position of the point.

t
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Strain Displacement Relations

From the definition of strain (Fung [7]),

Cij = (Ui, + Uj j,

and the assumption of axial symmetry, only four strains

remain.

aUR
CR aR

c= UR
e L.R (2)

aUz
CZ = aZ

aUR aUZ
YRZ - a + aR

Equation set (2) can be arranged in matrix form

(see Appendix A). These are constant strain elements.

{e}e = [BI{6}e (3)

where [B] is a matrix of coefficients based solely on

geometry of the element. The matrix {6}e is the nodal dis-

placements of the element.

UZR I

UR

e{6}e= UZj

UR

UZ



10

Stress Strain Relation

Hooke's law for axisymmetric problems reduces to

four stresses.

[D] = (1 + v)(l - 2v)

aR

ae

TZ

'Tr RZ

= [DI

F(l-v) v

v (1-V)

V V

0 0

~ v 0

v 0

(l-v) 0

0 (1-2v)2

ECR

C a

CZ

YRZ
6

Stiffness Matrix

Element stiffness may be calculated by the princi-

ple of virtual work. The matrix {S}e is the nodal forces

resisting deformation of an element. Then from the princi-

ple of virtual work:

T JodV.
{S}e{6}~ = Jv ocdV.

Substituting equations (3) and (4) and integrating,

{S} {6} e = 2*RBARA* { 6}B]T[D][B]{61}e e e e

{S}
e

= 2Ta.RBAR-A.[B]T[D][B]{6}e.

RBAR is the radial distance to the centroid of the

element. Therefore the stiffness matrix is

CKI e = 2n BRs·A[B-T ]B[K] = 2ir'RBAR*A.[B]1 [D][B]I.e (5)

(4)
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The stiffness for the system of elements represent-

ing the continuous body may be obtained by adding the ele-

ment stiffnesses in the proper way. This may be done in a

tedious fashion by writing force equilibrium at each node

of the entire system and also element by element. The

terms of the element equilibrium equations are added into

the appropriate positions in the set of equations for the

entire system. This may be simplified by "globally" num-

bering the nodes in any orderly sequence and then listing

their displacements in a {6} array for the entire system

sequentially from smallest node number to largest. Each

element's nodes are called i, ., and m, numbering counter-

clockwise (See Figure 3). Nodes i, j, and m have values

prescribed by the global numbering. Then any number, kl2,

for example, in the element stiffness matrix adds into a

position in the assembled stiffness matrix calculable from

the node numbers i, j, or m which correspond to kl2.

The element stiffness matrix is 6 x 6 because the

element has six degrees of freedom. The order of the

assembled stiffness matrix is 2n x 2n where n is the num-

ber of nodes and 2 is the number of degrees of freedom per

node. However, the assembled stiffness matrix is banded

and sparsely populated for the element system of this

research. In fact, the maximum number of non-zero terms

on any row is fourteen. This is because the greatest num-

ber of nodes adjacent to any one node is six; so one node

plus six adjacent times two degrees of freedom is fourteen.

I
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Great savings in core storage are achieved by making use -of

this fact. An additional matrix called NADJ, composed of

the node numbers of each node and the nodes adjacent to it

is used to condense the assembled stiffness matrix, KASY,

from 2n by 2n to 2n by 14. A further explanation is given

in Appendix A.

Mass Matrix

The lumped mass matrix is used in this research

because of the assumption made by Costantino [51 that the

consistent mass matrix would not allow wave propagation

and in fact give rise to an infinite wave speed. That is,

all points in the body would feel the disturbance at the

same time. Appendix B shows that Costantino's assumption

is valid and compares the consistent mass matrix and lumped

mass matrix in a simple closed form problem. The consistent

mass matrix is derived in Appendix B.

The lumped mass matrix has proven to give appro-

priate results. The wave speeds are correct and stress

distributions follow the correct shape and approximate the

correct magnitude as is discussed in Chapter III.

The lumped mass matrix does not require any deriva-

tion. The mass of an element is equally divided among its

three nodes. A node shared by six elements then has the

mass of two elements concentrated at it. A node shared by

three elements has the mass of one element and so forth.

The lumped mass matrix is diagonal; Formulation of the
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mass matrix for this axisymmetric problem is shown in

Appendix A.

As an example of the lumped mass matrix consider

the mass times acceleration for the following one dimen-

sional bar example.

(2)

1
2

0

0O
O

j j -0 -' )Q(t)

5 nodes, 4 elements

m
0
= mas:- of one element

0 0 0 0 '1

1 0 0 0 °

0 1 0 0 U3

3
0 0 1 0 U4

O O o 2 u5

Equations of Motion

Consider a simple spring and mass system.

W = mg

T-Y- Equilibrium Position
X

ma = m0

k

6
1

8

$I
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Statically; F = O

-kc + W = 0.

k6 = W

Dynamically;

ZF = ma

-kx + W = mx

mx + kx = W

This approach holds for a complicated system of

masses and springs which is exactly the approximation of

dynamic finite elements with riass lumped at the nodes.

In matrix form,

[M]{6} + [K]{6} = {R} (6)

where

UR

UZi

UR2

6} = UZ2

UR

UZn

n is the number of nodes, and the matrix {6} is a columnar

array of nodal acceleration arranged in the same order as

{6}.

~-- ;~~~ r-I



To solve this set of equations, theaccelerations

are rewritten in finite difference notation. Thus,

U U -U U
U(t + At) (t) + (t - At)

t>O (At)2

Substituting the above relation into the equations

of motion (6),. each equation may be solved algebraically

for U(t + At) ' The equations are elastically coupled,

but this does not interfere with the solution which is done

node by node stepwise in time by increments of At . The

time step At can be no larger than the time required for

the dilatation wave to cross one element. The elements are

DE
right isosceles triangles so Atma = .707 , where DE

is the length of one leg of the triangle and C1 is the

DEdilatation wave speed. For convenience At = .5 E was

used. This time step produces results indistinguishable

from At
max

The initial time step is a special case in which

the condition

U Ut + At t - At
At t =0 (8)

t=O

must be used.
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CHAPTER III

ACCURACY OF PROGRAM

Ang and Newmark [4] solved a problem involving the

blast loading of earth with a finite difference technique.

Costantino [51 used the same problem to check his finite

element program which used rectangular elements. The pro-

gram used in this research (Appendix C) used triangular

elements (Figure 3) and produced similar results to the

previous two solutions. Figure 4 shows the load distribu-

tion on the surface. The similarity of the curves in

Figure 5 shows each method is satisfactory.

Results from the program in Appendix C were uti-

lized to make Figure 6. The solid lines-are theoretical

wave positions calculated from thewell-known formulas for

wave speeds in a solid (see Mason [81).

pV Dilatation wave speed (9)

V 'vShear wave speed (10)
S P

where X and i are the Lame constants.

Although the velocities computed are delayed in

time, they are correct. The dilatation wave speed was

located by the peak compressive axial stress generated by
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a sinusoidal point load, and the shear wave position was

located by the peak radial displacements generated by the

same sinusoidal point load. The delay in time is caused by

the inertia of the lumped masses resisting the motion

imparted by the forcing function. A sample print-out is

included in Appendix C.

Figure 7 shows the temporal history of stress at a

certain depth on thecenterline. The theoretical solution

is due to Davids [1]. An exponentially decaying step point

load.(Figure 8) was applied on the centerline, normal to the

surface of the plate. The severe oscillations are due to

the element size and the discontinuous nature of the forcing

function. The discontinuity was reduced by applying a ramp-

step load shown in Figure 9. Davids stated that for a step

load the stress at a point would approach a value greater

than zero for large times as shown in Figure 10. Figure 10

showsi that the longer the ramp time, the smaller the oscil-

lations. In fact it can be seen from Figure 5, that the

oscillations become unimportant when the discontinuities in

the forcing function are small. When a full sine forcing

function is applied, the oscillations are unnoticeable as

can be seen in Figure 11. The tensile peak at 1 micro-

second is due to the shear wave.

A more precise understanding of the nature of the

oscillations may be achieved by writing the finite element

equations for a one dimensional bar and solving them by

Laplace transforms. This procedure is carried out in detail
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in Appendix B. The result is that at time zero for a bar

approximated by two elements:, using the lumped mass

approach the reaction at one end is equal to the applied

load at the other end. The same is true when the consistent

mass matrix is used. This is because two elements are just

one finite difference space for acceleration. For four

lumped mass elements, the reaction is one-fifth the applied

load. Using four consistent mass elements the reaction

equals the applied load at time zero. The exact-solution

is that the reaction at time zero is zero. The more

lumped mass elements that are used, the smaller the

reaction. The consistent mass elements always give a

reaction equal to the load, no matter how many elements

are used, which indicates that the disturbance is propa-

gated at an infinite speed.

The reason for the non-zero (albeit small) reaction

in the finite element approximation is that the solution is

a Fourier series with a finite number of terms. A plot of

such a series is a curve which oscillates about the exact

answer. With enough terms in the series, the oscillations

become indistinguishable, except at discontinuities. At a

discontinuity, a Jump known as Gibb's phenomenon always

occurs and is proportionate to the size of the discontinu-

ity. The number of finite elements along the length is

analagous to the number of terms in a Fourier series for

approximation of waves which propagate axially. Therefore,

the smaller the element size, the more terms in the series

I
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and the better the approximation. Further, the first term

in the series is the mean value of the series, hence the

size of the reaction at time zero is just a measure of

accuracy.

As a final check of the program, a step load was

applied to a long cylindrical bar. Figure 12 shows the

results for two element sizes at about the same instant in

time. The smaller elements give a more accurate answer in

terms of percent error and rapidity of convergence behind

the wave front. The small difference in the two results

shows the larger element size is actually a good approxima-

tion, and the results are influenced strongly by Gibb's

phenomenon. The number of nodes in the two problems is

equal. The only difference in the two bars is the element

size. The grids are identical, each having five nodes

radially and 168 nodes axially. The different element size

changes the dimensions of the bar, but the number of terms

in the approximation is the same. Therefore, the number of

terms in the Fourier series for each element size is the

same and the accuracy of each should be similar. The series

for the smaller elements is somewhat more accurate because

the coefficients of the terms in the series are better

proportioned.

It is clear from the previous assessment of accuracy

that the lumped mass matrix does give satisfactory results

with sufficiently small elements and continuous forcing

functions. The accuracy improves with finer grids (more
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computer space). While the accuracy of the stresses was

limited by the capacity of the computer used, they do com-

pare favorably with other numerical and exact solutions,

and the necessary waves are generated at the proper speeds

and locations to allow study of spallation. Limitations

do exist, however, on the allowable sharpness of a dis-

continuous input load.

,;
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CHAPTER IV

RESULTS

Although all four stresses (radial, circumferential,

axial, and shear) are present, examination of the stress

distribution has shown that the axial stress is dominant,

especially in the area where a fracture may develop.

Experimentally produced spalls are usually tensile failures.

Since the axial strejs is the most prominent, and undergoes

the most dramatic fluctuations, and the applied stress is

in the axial direction, the results shown are for axial

stress. This will serve to illustrate the maJor response

of the plate. It would be futile to attempt to convey all

or most of the information generated by the program in the

form of graphs. Each problem discussed produced approxi-

mately forty stress distributions and nodal displacement

displays which were each for separate instant in the

response history of the plate. Condensation of these

results to comments and a few graphs became essential.

Direction of load application-was always normal to the

front face of the plate. -
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Point Load

The results of the point load application compare

favorably with Davids [1] predictions. Although the step

load response oscillates severely for reasons explained in

Chapter III and Appendix B, Figure 6 shows the response

does follow the proper values in time and space. The

response is smooth when a full sine wave is applied as

the forcing function (Figure 11).

The full sine forcing function has a shape which

produces a clear peak in the response which can be easily

followed as the waves propagate. The lack of oscillation

and the obvious peak made the full sine forcing function

the -convenient choice for investigation of the stress

waves. For the point load problem, a pulse of 100 pounds

maximum amplitude was applied to the centerline in the

axial direction. Figure 13 shows the axial stress dis-

tribution for several times, and the significant features

are labeled.

The stress on the centerline is the only one shown

because the magnitude is highest on the centerline.

Examination of the semi-graphic printout (see sample print-

out in Appendix C) showed the stress waves moving out

symmetrically from the point of load application in a pat-

tern similar to the ripples produced by a stone dropped in

a puddle. Figure 14 shows this pattern in idealized form

before and after reflection of the dilatation wave from the

back face. Figure 13 shows the response of the plate
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subjected to a full sine pulse whose period is about the

same as the time required for the dilatation wave to cross

the thickness of the plate. Figure 15 shows what happens

when the period of the pulse is equal to the time required

for the dilatation wave to cross five-eighths of the thick-

ness of the plate.

Distributed Load Over a Small Radius

A small radius is one which is equal to or less than

about one-third of the plate thickness. The wave initially

has a plane front, but seems to round off to a shape like

that of the point load and produces a similar response.

The full sine pulse was used for distributed loads,

also. A maximum amplitude of 1,000 psi was chosen for

convenience.

The wave generated from the front face propagates in

the axial direction for radii less than the radius of load-

....ing. From the point at the outer edge of the distributed

load, the wave moves out like the waves produced by a point

load. Since the dilatation wave moves away perpendicularly

from the front face, it should not be followed by a shear

wave. On the centerline it is not immediately followed by

a shear wave.

But at the extreme radius of loading the dilatation

wave is followed by a shear wave immediately. It is produced

because the dilatation wave has a radial component at that

point. As time goes on, the shear wave spreads from the
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S

Figure 14. Idealized Wave Patterns Produced by Point Load
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radius of loading radially and axially. The radial propaga-

tion is actually a radial dilatation wave caused by the

Poisson effect. The reflection of this wave from the front

face generates the shear wave. With the small radius of

loading, the shear wave spreads to the centerline and fol-

lows the axial dilatation wave. The smaller the radius of

loading, the sooner the shear wave reaches the centerline.

In addition, the part of the plane wave at the radius of

loading attenuates causing the plane wave to apparently

"round-off" to a shape similar to the shape caused by a

point load. In comparison to a point load, the shear wave

initiation on the centerline is delayed when the load is

distributed. Figures 16, 17, 18 and 19 show axial stresses

on the centerline for four different radii of loading at

different times. Again the centerline is the location of

the maximum stress now because of the rounding off of the

dilatation wave.

Figure 20 compares the peak axial stress on the

centerline as a function of depth for four radii of loading

and a point load. The point load decays by the inverse of

depth squared. The distributed loads approach a non-

decaying plane wave as the radius of loading increases.

Figure 21 shows the idealized wave patterns at three times.

Distributed Load Over an Intermediate Radius

An intermediate radius is, less than or equal to the

plate thickness and greater than one-third of the plate
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thickness. The maximum axial stress develops on the cen-

terline, but high axial stresses also develop off the

centerline.

The high axial stress off the centerline becomes

more pronounced as the radius of loading increases. If the

axial stress distribution is thought of as a contoured sur-

face, a saddle of lower axial stress exists between the on

and off centerline regions of high axial stress.

The on-centerline axial tensile stress develops

first. The larger the radius of loading, the closer its

location of development approaches a depth of about 70 per

cent of the plate thickness. The' larger the radius of

loading, the deeper the wave on the centerline travels at

its applied stress value, resulting in less attenuation and

higher peak tensile axial stresses for larger loading,

radii. The location of this stress buildup corresponds well

with the location of th- superposition of the edge and

dilatation waves. This location is dependent on the wave

speeds which are functions of the material properties.

The off-centerline tensile stress increases to a

maximum located at a radius less than the loading radius

but at a time well after the time the high tensile stress

develops on the centerline. At the time the off centerline

stress is maximum, it is the greatest tensile stress in the

plate, but lower than the previously developed highest

stress on the centerline. The location of the off-

centerline maximum was observed to occur at half the
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loading radius for a loading radius equal to the plate

thickness.

Figure 22 shows idealized wave patterns for this

case. Figures 23 and 24 show axial stress distribution.

Notice that the curves are for radii off the centerline as

well as on it. The applied loads were uniform distributed

loads.

Distributed Load over a Large Radius

When the loading radius is greater than the plate

thickness, the off-centerline tensile axial stress develops

first, propagates toward the centerline and exceeds the

stress on the centerline. Once it reaches the centerline

it continues to increase briefly, then attenuates. It

stays on the centerline and propagates toward the front

face. While developing and moving toward the centerline,

the stress also moves somewhat toward the front face.

After it reaches the centerline another "hot-spot" develops

off the centerline with lower stresses between it and the

centerline. The new hot-spot develops at the same depth as

the current maximum centerline stress, moves with it toward

the front face and also toward the centerline. This new,

late developing hot-spot is smaller than the maximum center-

line stress. It is the same as the off centerline hot-spot

developed by a load applied over an intermediate radius.

Figure 25 shows idealized wave patterns for this case.
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Figures 26 and 27 show axial stress at different radii and

times.

Table 1 shows important stress values, times and

locations for each loading condition. Comparison of the

times in the last two columns shows whether the maximum

stress is due to superposition of the reflected dilatation

(Si) with the incident shear (S3) or with the edge wave (S2).

The table summarizes several figures in this chapter.
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CHAPTER V

SUMMARY AND CONCLUSIONS

Detailed, quantitative failure criterion are not

discussed in this presentation, but a qualitative discussion

is given on the nature of the response of an elastic plate

to various impulsive loading conditions.

Point Load

The axial point load on the centerline sends a

dilatation wave in all directions, but primarily (in terms

of magnitude) in the axial direction. The Poisson effect

causes the radial propagation which reflects from the front

face as the wave expands. This reflection produces the

shear wave, which follows the axial dilatation wave at the

shear wave speed. The shear wave has particle motion trans-

verse to the direction of propagation. The dilatation wave

has particle motion in the same direction as propagation.

The shear wave produces an axial stress opposite in

sign from the axial stress caused by the dilatation wave.

When the speedier dilatation wave reflects from the back

face (a free surface), the reflection returns at the

dilatation wave speed with axial stress of the opposite

V.I
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sign. The reflection also produces a shear wave, but this

shear wave occurs too late to influence spallation. The

reflected dilatation wave and incident shear wave, there-

fore, have axial stress of the same sign and superpose con-

structively to cause a high tensile stress on the centerline.

This high stress can be greater than the tensile strength of

the material and lead to a spall. Although the front face

may be damaged by the impact or blast, this damage does not

necessarily pierce the plate and,until the shear wave and

reflected dilatation wave superpose, stresses are not great

enough to fracture the material. For a point load, the

crack initiates on the centerline and spreads radially. The

location on the centerline may be found from graphs similar

to Figure 6 for step loads and Dirac delta loading. How-

ever, the sine pulse attenuates in a way such that the ten-

sile stress develops at a shallower depth than predicted by

Figure 6.

Small, Uniform Loading Radius

Initially, the stress waves differ from the point

load, but after the shear wave develops on the centerline,

the response is very similar to that of a point loaded

plate. The dilatation wave has decayed away from the cen-

terline so it seems to round off, but the front is a

straight line radially. This attenuation also occurs on the

centerline (after a certain depth) but to a lesser degree.

The-stress will build up in the same way as for the point
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load. The fracture condition develops on the centerline and

spreads radially. Attenuation of the sine pulse results in

the location of the tensile stress to be at a shallower

depth than predicted by Figure 6.

Intermediate Uniform Loading Radius

The dilatation wave front decays inward from the

radius of loading until it is "rounded" to the same condi-

tion described for a small radius of loading. This occurs

before the dilatation wave reflects from the back face and

exhibits the same phenomenon which occurred in the waves

generated by a uniform load applied over a small radius.

Unlike the case of the small loading radius, a

"hot-spot" of tensile stress develops off the centerline

at a position and time indicating the cause is superposi-

tion of incident shear and reflected dilatation waves. How-

ever, this hot-spot develops late and is smaller than the

stress which develops on the centerline.

The stress on the Centerline results from the combi-

nation of the reflected dilatation wave and the incident

wave labeled S2 in Figure 25 (see discussion for large load-

ing radius). It develops on the centerline because the

dilatation wave has attenuated away from the centerline.

Therefore, the fracture develops on the centerline and prop-

agates outward. A secondary crack may develop off the cen-

terline if the hot-spot has a high enough tensile value.

I.
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Large Uniform Loading Radius

The numerical results from a large loading radius

clearly support the mathematical analysis of Viswanathan

and Biswas [2]. The highest tensile stress develops off

the centerline before a high tensile stress develops on the

centerline. Also,'it develops too early to be caused by

combination of the shear wave and reflected dilatation

wave. It moves toward the centerline while moving toward

the front face. It does not develop until after reflection

of the dilatation wave. These conditions mean that the

reflected dilatation wave is combining with what Viswanathan

and Biswas call "an edge wave . . . with a toroidal front,

expanding with velocity c," the dilatation wave speed.

Figure 25 shows this "edge wave" labeled "S2." "Edge"

refers to the outer edge of the loaded area on the front

face, from which the edge wave emanates. Therefore the

crack initiates off the centerline and propagates toward it.

The location of the off-centerline tensile stress develop-

ment is at a-radius less than the radius of loading due to

the same attenuation "round-off" described earlier.

The stress on the centerline may exceed the tensile

strength of the material before the off-centerline crack

gets there. A second crack would develop on the centerline

and travel outward to meet the first crack in this case.

Finally, it should be noted that attenuation of the

wave resulted in the four cases described. If the wave

front had maintained the input stress between the centerline
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and radius of loading, only the two cases of point load and

distributed load need have been discussed. Without atten-

uation even the smallest of loading radii would produce the

highest stress off the centerline first due to superposi-

tion of SI and S2. This would occur near to the back face

and at the radius of loading. The shape of the waves does

not attenuate or round-off. The magnitude does attenuate

from the radius of loading (least attenuation on the center-

line), making the waves seem to round-off. The reason for

this attenuation may be thought of as a "diffusion" of

stress from the highly stressed (saturated) region inside

the radius of loading to the region outside the radius of

loading where the plate has low stresses. This diffusive

process is due to the Poisson effect which causes wave

propagation in directions other than the direction of

loading.
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APPENDIX A

DERIVATION OF FINITE ELEMENT MATRICES

Displacement Functions

The displacements within elements are given by:

UR = a1 + a2R + a3 

(A.1)

UZ = a4 + a5R + a6 Z

where R and Z are the coordinates of the point whose

displacement is being calculated. UR and UZ are the

radial and axial displacements, respectively. Since the

displacement functions are valid for the nodes as well as

inside the element, the unknown coefficients al through

a6 may be determined by writing the displacement functions

at each node. Let the nodes and elements of the system be

numbered in the manner of Figure 3. Let the nodes of each

element be i, j and m in a counter-clockwise manner and

refer to the global numbers of Figure 3.

. .
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UR i = a1 + a2Ri + a3Zi

URj = a1 + a2Rj + a3ZJj 2R 3

URm = al + a2 R + a3 Zm

UZ aR ZUi = a4 + a5Ri + a6Zi (A.)

UZj a4 +
'Rj + a6Zj

UZm a4 + a5Rm + a6Zm

The constants al , a2 , and a3 may be solved from

the first three equations by Cramer's rule and a4 , a5 ,

and a6 are found in the same way from the last three

equations. One example and other results follow.

UR i R i Z

URj Rj Z

UR
m

R
m

Z
m

al = (A.3)
1 R

i
Z

1 Rj Z

1 Rm Z

Solving A.3 gives:

(aiURi + a.UR + amURm) (A.4)
a1- (a + a. + am

where (ai + aj + am) = 2A = twice the area of the triangle.

Similarly the other a's are defined in terms of nodal
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displacements. The arithmetic terms a, b, and c are

defined in Table 2.

a =

a2 =

a3 =

a4 =

a5 =

(aURi+ aUR + aUR + amUR
m
)

2A

(biUR
i

+ b.UR. + bmURm)

2A

(ciURi + c UR + cMURM)

2A
(A.5)

(aiUZ + a UZ + amUZ )
ii .1 mm

2A

(biUZi + bUZ + bmUZm )

2A

(ciUZi + c.UZ. + cmUZL)

2A

TABLE 2

COEFFICIENTS USED IN THE DEFINITION OF DISPLACEMENT

a
i = (RjZm - RZ j) b i = (Z - m) c. = (Rm - R)

aj =(RmZi - RiZm) bj =(Z
m Z i ) cj = (Ri -R m

)

am = (RZj -Rj Zi bm (Zi Zj) m = (Rj R i )

Strain-Displacement Relations

The definition of strain in terms of displacement

for axisymmetric problems is:

I
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aUR
ER = R 2 a

_aUR _L1 a3Z BAR
E R RBAR + a2 + RBAR

(A.6)auz
CZ z a = L6

aUR +UZ
YRZ = aZ + R - 3 + 5

The definition of e' includes the following approx-

imation since these are constant strain elements.

(R + R. + R)
RBAR = m

(A.7)
(z. + Z. + Z )

ZBAR i 3 m
3

Define the element displacement matrix as:

UR

UZ

UR
{6}e = (A.8)

UZ

UR

UZ

Substitution of the definitions of the constants,

ai' results in the strain displacement equations in matrix

form. Equations A.6 become:



O bm

O d

0

0

cj 0 c
m

b c
m

bmj A

d= a +i RBAR

a.
d = R +
dj RBAR

am
m RBAR

ciZBAR
b. + B

1 REAR

b + ciZBAR

c ZBAR

m mRBAR

The Stiffness Matrix

The element stiffness was derived on page 10 to be:

~Kl~e = 2-RBAR·A BT[[K] e= 2' ERARAB] [D][B] (A.11)

In order to develop a procedure for assembling the

stiffness matrix for many elements, consider a two element

example, shown in Figure 28.

For the system, equilibrium of nodal -forces gives:

1
2A

O bj

O dj

0 C
i

CR

e~

CZ

YRZ

0

Ci b i Cj

{6} (A.9)

where:

(A.10)
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Sl(1R) = 0

S1 (2Z) = RlZ

S1(2R) + S2(2R) = 0

S
1
(2Z) _ S

2
(2Z) = R

2
Z

(A.12)
S2(3R) = 0

S2 (3Z) = Q3z

S
2
(4R) + S

2
(4R) = O

S2 (4Z) + S2 (4Z) = Q4Z

-Notation: S (1R)

Direction
Global node number

I Element number

The element stiffness equilibrium equations define

the nodal forces (S) in terms of stiffness times displace-

ment. Substitution of these terms in the above system

equilibrium equations results in the assembled stiffness

matrix for the two element'system. In order to show that

the position of the element stiffness term in the assembled

stiffness matrix is given by node number, the element stiff-

ness matrices for the two element example are given in the

equations below in expanded form. The program in Appendix B

uses the same minimum space (KELM) for each element stiff-

ness matrix and in the subroutine KFORM computes the posi-

tions to add them to in the assembled stiffness matrix

(KASY) by node number and a pointer matrix (NADJ). Maximum

i;~
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storage compression is achieved by using NADJ to eliminate

the zero terms in a row, resulting in KASY having only

fourteen columns.

[K]1 {6}

[K]1 =

[K]2 =

+ [K]2 {6} = {R}

k(11) k(12)
11 12

k(21) k( 2 2)
21 22

0

k(4 1 )
31

0

0

k( 42)
32

0

0

0O

Lo

k(2 2)
11

k(32)
21

k(4 2)
31

(A.13)

0 k(1 4)
13

k(24 )
23

0

0

0

o

k(44)
33

0 10

(A.14)

(A.15)

k(24)
13

(34)
24

k(23)
12

k(33)
23

k(43)k32
32

k(44)
33 

i.
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UR1 0

UZ1 R_~uz4~ Q~RZ

UR 0

UZ2 R
2 2Z

UR 0
3

UZ Q

UR4 0

UZ4 Q4Z

Each k in the above expanded element stiffness

matrices (A.14 and A.15) is a 2 by 2 partition of the

original 6 by 6 element stiffness matrix. The subscript

refers to the row and column position of the partition in

the 6 by 6 element stiffness matrix. The superscript is

determined by the i, j, m node numbers of the element and

is the position of the partition in the assembled stiffness

matrix. This is further illustrated below. Consider any

one element with some external loading (R).

[K]e{6}e = {R} (A.17)

i J m

k21 k 2 kR (A.18)J k2 1 k22 k2 3 6 iR (A.18)

k3 1 k
3 2 k3 3 m Rm
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where 6
i

, R i , etc., are 2 by 1 partitions such that:

6 i and so forth.

The system of forcing KELM to conform to the i, j,

m sequence of nodal displacements in the {6} array
e

insures that the proper indexing of the partition will occur.

The Lumped Mass Matrix

The lumped mass matrix is computed by the subroutine

MFORM. Since the grid generated by this program is regular

and defined by the number of nodes axially and radially,

the mass matrix is formed node by node. The nature of the

grid (Figure 3) allows the matrix to be computed in stages,

as indicated by the comment cards (see Appendix C). For

example, all interior nodes are shared by six elements, so

the factor CF is equal to 2. The average of the radii to

the centroids (RBAR's) of the six elements surrounding any

interior node is always the same as the radius of the node,

so DR = 0 . Similarly the mass lumped at each-node is

based on the number of elements which share the node and the

average of the radii to the centroids of those elements.

The lumped mass matrix for the two element example in

Figure 28 is:



. 333pAC1

0 .333

o 0

o 0

0 0

o 0

0 0

o 0

0 0 0 0 0 0

3pAc1 0 0 0 0 0 0

.667pAc2 0 0 0 0 0

O .667pAc2 0 0 0 0

O 0 .333pAc3 0 0 0

0 0 0 .333pAc3 0. 0

O 0 0 0 .667pAc2 0

o 0 0 0 0 .667pAc2

where,

cl = RBAR for element 1

C2 = RlZ - R2Z

C3 = RBAR for element 2.
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APPENDIX B

DERIVATION OF LUMPED AND CONSISTENT MASS

MATRICES FOR ONE DIMENSIONAL PROBLEM

WITH LAPLACE TRANSFORM SOLUTION

Description of Problem

In order to determine which mass matrix approach

should be used for propagation problems, both will be used

to generate equations approximating a bar subjected to a

step tensile load at the free end and fixed at the other

end. Laplace transformation will be the method of solution

of the equations resulting in an expression for the fixed

end reaction at t = 0(+) . One-dimensional finite ele-

ments are used to approximate the bar which is assumed to

have a length many times greater than the diameter.

Lumped Mass Matrix

S1 3
R sl + /

_ 1 2 2 3 JR = Q(t)
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The subscript refers to the node and the superscript

refers to the element. Let an element be described in

general as follows and choose a linear displacement

function.

A = area

E = Young's modulus

·'t- Q' 4 p = mass density

u = l + a2x (B.1)

U -U
E= a 1 (B.2)

[B] = T [-1 1] (B.3)

[D] = [El (B.4)

{u,{6 } u ,6} = u (B.5)

T

[K]e = AQ[B] [D][B] (B.6)

[K] = AE[1 1] (B.7)

{6}e = [K]e{l}e (B.8)



S1 R 1

1 2
S2 + S2 = 02 2

S2= Q3

-1 O] U

2 -1 U2

-1 u u 3

j 3

0 0 01

1I

0 1 0

00

[M]{i} + [K]{6} =

R

Q

= pAt = mass of
one
element

{R}

Let Q(t) = QH(t) .

By following the pattern shown for two elements,

the equations for four elements may be written:

71

(B.9)

1

AE 1
Q _1

0

[Ml =mo

(B.10)

(B.11)

(B.12)

I

I



0 000

1 00 0

0 10 0

001 0

° ° °2

0

0

0'

Q(t)

U1

u 2

u3

U4

u 5

AE
Q

1 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 1

0
Divide both sides by 2 , recall mo = pAl , and

longitudinal wave speed, c = .

.u1 + (.)2(2ul - 2u2) = 2R

2u2 + (2(-2ul + 4u2 - 2u3 ) = 0

2u3 + ( (-2u2 + 4u4 - 2u4 ) = 0 (B.14)

2u4 + () 2(-2u3 + 4u4 - 2u5 ) = O

u5 ( )2 (-2u4 + 2u5 ) = 2QH(t)

Initially, at t = 0 , the displacements and velo-

of all five nodes are zero. The boundary condition

such that the left end is fixed, or, the displacement,

72

i

0

0

10

0

U1

U2

U3 

u4

u5

(B.13)

cities

exists

I
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velocity and acceleration of node one are zero for all

time. This boundary condition means that the Laplace

transforms of u1 and ul , are also zero. The Laplace

transforms of the equations with the initial and boundary

conditions substituted are:

L[R
1

]
( ) 2U2 ' -1

0

s2 U + () 2(2U2 U3 ) = O

2 3 +(4
2
(U 2 + 2U4 - U4) = o (B.15)

s2Uq4 (- U + 2U4 - U5 ) = O

s2U + () 2 ( 2 U4 2U m2Q
sm0

where the capital U indicates the Laplace transform of

the displacement and s is the Laplace operator.

It is clear from the first equation that U2 can

be expressed as a constant times the transform of R1 .

This is substituted for U2 in the succeeding equations.

Then, with that substitution in the second equation,

U3 is expressed in terms of the transform of R1 . The

substitutions continue and after substitution and rear-

rangement the fourth equation expresses U5 in terms of

the transform of R1 . The fifth equation is used to find

the transform of R
1

in terms of the transform of the

forcing function. The result is separated by partial frac-

tions into recognizable transforms which are the transforms

, _ _N . _ . . ... .! .. __......_,_.
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of sine functions and the transform of the forcing function

all multiplied by constants. The inverse of this Laplace

expression is the reaction, R1 , as a function of time.

At time zero, the four sine terms vanish, and

R1l =- .5 (B.16)

Additional elements result in more terms in the

series and R1 at time zero approaches zero.

Consistent Mass Matrix

The mass of the element is considered to be dis-

tributed. Its inertia is assumed to act as a body force

causing nodal forces, Sb , in combination with the nodal

forces, Se , caused by the stiffness of the element. The

virtual work expression must then include the contribution

of the mass intertia.

Let X = pu = body force.

Siui + Sij u = I Adx+ XuAdx (B.17)

i xi

The displacement function is now variable with position and

time.

u(x,t) = al + a2 x(t) (B.18)

u(xt) = uj - ui i (B.l9)
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u(x,t) = uj - u i ,. (B.20)

rewriting B.17

(Sb + e)i ui + (Sb + se) uj

= XJ aEAdx + f J XuAdx (B.21)

i i

The contribution of the inertia forces may be formed

by separating the body force terms.

b i b i
(Sb)i Ui + (sb) u.

XA[uj( - xi) - ui(x - xj)]dx (B.22)

Equating coefficient of ui and uj ;
i- i
I

bi = 1 xj XA(xj - x)dx

i
(B.23)

(S ) = - I XA(x - xi)dx
j xi i

Substitution of X = pu,

Xi = (i - 1),

xj = iQ,

rearranging, substituting Z = (- i), and with the corres-

ponding changes in the limits of integration, the nodal

forces due to inertia forces may be written;

1



76

(sb i = ( (Sb)i = -m1I ( - ui )Z2 + ujZ)dZ

(B.24)

(S b )J = (( - ui)Z + uj )dZ

Evaluation of the integrals yields;

bi = mo+i

(B.25)

(Sb) i + i
)j = mo + -T-

By writing equilibrium of forces at the nodes of

the two element problem, remembering that the nodal forces

consist of both inertia and elastic forces, the following

set of equations is formulated.

1 1 u

1 2 1 u

1 -1 U R

2 -1
2 (B.26) Q

+ L -1 u1 

where the first matrix is the so-called consistent mass

matrix and the stiffness matrix is the same as before.

M6 plus K6 give the nodal forces.
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After formulating the four element problem with

the consistent mass matrix, the solution of the five result-

ing equations by Laplace transform follows the same proce-

dure as shown for the four element lumped mass problem.

The same initial and boundary conditions-are used and the

reaction at node one is found by successive substitution.

Again,the solution is a step plus sine functions all multi-

plied by constants. At time zero, only the step acts on

node one and the constant coefficient is unity. The

reaction at t = O(+) is:

R |t=+O =--Q (B.27)
t=+O

Even with additional elements, R1 -Q at time

zero. Therefore, the consistent mass matrix does not allow

propagation of transient phenomenon. The reaction, R1

is a Fourier sine series in which the first term is a con-

stant since the forcing function is a unit step. It is

well known that Fourier series solutions for a step, or any

discontinuous function, have a jump at the discontinuity

known as Gibbs phenomenon and proportional to the size of the

discontinuity (See Biot and von Kdrmdn [9]). Further, the

above analyses indicate that the dynamic finite elements

solutions are equivalent to Fourier series solutions even

though the process is numerical in the computer. There-

fore, the oscillations in the finite element solution are

_ _ . _ -- _ _ __ . . _ . . .. - -- - r
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due to too few terms in the series (too few nodes) and

Gibbs phenomenon.

Finally, it is easy to see that the equations of

motion developed by lumping the mass at the nodes are the

same as the one dimensional wave equation. The comparison

is obvious when the.accelerations in the finite element

method are written in finite difference notation. Then

the differential equation for one-dimensional waves is

written in finite difference notation. The finite element

stiffness times displacement terms are already equivalent

to the difference notation. However, when the accelerations

in the finite element equations for the consistent mass

matrix are written in difference form, the result does not

correspond to the difference form of the one dimensional

wave equation. This qualitative look at the nature of the

equations further supports the idea that the consistent

mass matrix will not allow propagation.

I.



79

APPENDIX C7

APPENDIX C



80

APPENDIX C

COMPUTER PROGRAM JMMSPALL

Following is a listing of the program used in this

research. A sample printout is included, consisting of a

typical printout for one time step. In use, the program

solves a dynamic axisymmetric problem and prints out

stresses and displacements at several times. The sample

problem is a plate with a distributed load. There are

twenty-four nodes axially and thirty-five nodes radially.

Distributed loads are produced by resolving the desired

stress to nodal forces.
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